An Individual Ergodic Theorem

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strongly Ergodic Sequences of Integers and the Individual Ergodic Theorem

Let S = {ki,ki, ...} be an increasing sequence of positive integers. We call S strongly ergodic if for every measure preserving transformation T on a probability space (Cl, J, P) and every / £ Li(f2) we have limn-»oo(l/n) J^^j f(TkiuJ) = Pf(w) a.e. where Pf is the appropriate limit guaranteed by the individual ergodic theorem. We give sufficient conditions for a sequence S to be strongly ergodi...

متن کامل

The Converse of the Individual Ergodic Theorem

converge almost everywhere to a finite limit f*(x). It then follows that the limit function/* is integrable and that/*(7x) =/*(x) almost everywhere. This result can be applied to certain cases in which the given measure m is not preserved by the transformation T. In order to discuss this application, we recall some terminology for measures and transformations. If (X, S) is a measurable space, a...

متن کامل

Individual ergodic theorem for intuitionistic fuzzy observables using intuitionistic fuzzy state

The classical ergodic theory hasbeen built on σ-algebras. Later the Individual ergodictheorem was studied on more general structures like MV-algebrasand quantum structures. The aim of this paper is to formulate theIndividual ergodic theorem for intuitionistic fuzzy observablesusing  m-almost everywhere convergence, where  m...

متن کامل

Individual Ergodic Theorem for Unitary Maps of Random Matrices

Using simple techniques of finite von Neumann algebras, we prove a limit theorem for random matrices. 1. Notation and main result 1.1. Let (Ω,F , μ) be a probability space, and let H denote the space of all d × d matrices with entries in the complex space L2(Ω, μ). H is a Hilbert space with the inner product (1) 〈AB〉 = Φ(AB∗), where φ(A) = ∫ Ω tr A(ω)μ(dμ), and tr denotes the normalized trace o...

متن کامل

Kingman's Subadditive Ergodic Theorem Kingman's Subadditive Ergodic Theorem

A simple proof of Kingman’s subadditive ergodic theorem is developed from a point of view which is conceptually algorithmic and which does not rely on either a maximal inequality or a combinatorial Riesz lemma.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1977

ISSN: 0002-9939

DOI: 10.2307/2041898